Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the potential high acid deposition in northeastern China

Identifieur interne : 000114 ( PascalFrancis/Curation ); précédent : 000113; suivant : 000115

On the potential high acid deposition in northeastern China

Auteurs : JUNJI CAO [République populaire de Chine] ; XUEXI TIE [République populaire de Chine, États-Unis] ; Walter F. Dabberdt [États-Unis] ; TANG JIE [République populaire de Chine] ; ZHUZI ZHAO [République populaire de Chine] ; ZHISHENG AN ; ZHENXING SHEN [République populaire de Chine] ; YINCHANG FENG [République populaire de Chine]

Source :

RBID : Pascal:13-0337467

Descripteurs français

English descriptors

Abstract

[1] There is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO2 and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO2 emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO2 concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca +, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigation-especially in northeastern China. However, there are additional issues pertaining to the precursor-acidity relationship that need further investigation. Why is it that the reduction in acidity due to the alkaline ions is only significant in summer? During winter, the measured alkaline ions play a much smaller role in explaining the discrepancy. The measured alkaline ions in this study were mostly obtained from particles in the PM2.5 range. However, the size of calcium particles is typically much larger-extending well beyond 2.5 μm-and so a significant amount of calcium may be underestimated by PM2.5 measurements alone. The under-sampling of calcium particles is further exacerbated in that the sampling protocol excluded particle (and soluble ion and pH) measurements during dust storms. This all leads to the need for an improved understanding of pollutant-ion-particulate interactions in China, and their role in explaining the counter-intuitive conclusion that dust mitigation strategies in China could have the unintended consequence of exacerbating acid rain conditions.
pA  
A01 01  1    @0 2169-897X
A03   1    @0 J. geophys. res., Atmos. : (Print)
A05       @2 118
A06       @2 10
A08 01  1  ENG  @1 On the potential high acid deposition in northeastern China
A11 01  1    @1 JUNJI CAO
A11 02  1    @1 XUEXI TIE
A11 03  1    @1 DABBERDT (Walter F.)
A11 04  1    @1 TANG JIE
A11 05  1    @1 ZHUZI ZHAO
A11 06  1    @1 ZHISHENG AN
A11 07  1    @1 ZHENXING SHEN
A11 08  1    @1 YINCHANG FENG
A14 01      @1 Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences @2 Xian @3 CHN @Z 1 aut. @Z 2 aut. @Z 5 aut.
A14 02      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 2 aut.
A14 03      @1 Vaisala Inc. @2 Boulder, Colorado @3 USA @Z 3 aut.
A14 04      @1 Chinese Academy of Meteorological Sciences @2 Xian @3 CHN @Z 4 aut.
A14 05      @1 Xi'an Jiaotong University @2 Xian @3 CHN @Z 7 aut.
A14 06      @1 State Environmental Protection Key Laboratory, Nankai University @3 CHN @Z 8 aut.
A20       @1 4834-4846
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 3144D1 @5 354000140724750650
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 13-0337467
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research. Atmospheres : (Print)
A66 01      @0 USA
C01 01    ENG  @0 [1] There is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO2 and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO2 emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO2 concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca +, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigation-especially in northeastern China. However, there are additional issues pertaining to the precursor-acidity relationship that need further investigation. Why is it that the reduction in acidity due to the alkaline ions is only significant in summer? During winter, the measured alkaline ions play a much smaller role in explaining the discrepancy. The measured alkaline ions in this study were mostly obtained from particles in the PM2.5 range. However, the size of calcium particles is typically much larger-extending well beyond 2.5 μm-and so a significant amount of calcium may be underestimated by PM2.5 measurements alone. The under-sampling of calcium particles is further exacerbated in that the sampling protocol excluded particle (and soluble ion and pH) measurements during dust storms. This all leads to the need for an improved understanding of pollutant-ion-particulate interactions in China, and their role in explaining the counter-intuitive conclusion that dust mitigation strategies in China could have the unintended consequence of exacerbating acid rain conditions.
C02 01  2    @0 001E02D
C03 01  2  FRE  @0 Acidité @5 01
C03 01  2  ENG  @0 acidity @5 01
C03 02  X  FRE  @0 Mesure in situ @5 02
C03 02  X  ENG  @0 Measurement in situ @5 02
C03 02  X  SPA  @0 Medición en sitio @5 02
C03 03  X  FRE  @0 Observation par satellite @5 03
C03 03  X  ENG  @0 Satellite observation @5 03
C03 03  X  SPA  @0 Observación por satélite @5 03
C03 04  X  FRE  @0 Modèle chimique @5 04
C03 04  X  ENG  @0 Chemical model @5 04
C03 04  X  SPA  @0 Modelo químico @5 04
C03 05  2  FRE  @0 Ozone @5 05
C03 05  2  ENG  @0 ozone @5 05
C03 05  2  SPA  @0 Ozono @5 05
C03 06  2  FRE  @0 Traceur @5 06
C03 06  2  ENG  @0 tracers @5 06
C03 06  2  SPA  @0 Trazador @5 06
C03 07  2  FRE  @0 Aérosol @5 07
C03 07  2  ENG  @0 aerosols @5 07
C03 07  2  SPA  @0 Aerosol @5 07
C03 08  2  FRE  @0 PH @5 08
C03 08  2  ENG  @0 pH @5 08
C03 08  2  SPA  @0 pH @5 08
C03 09  2  FRE  @0 Zone urbaine @5 09
C03 09  2  ENG  @0 urban areas @5 09
C03 09  2  SPA  @0 Zona urbana @5 09
C03 10  X  FRE  @0 Précurseur @5 10
C03 10  X  ENG  @0 Precursor @5 10
C03 10  X  SPA  @0 Precursor @5 10
C03 11  X  FRE  @0 Dioxyde de soufre @2 NK @2 FX @5 11
C03 11  X  ENG  @0 Sulfur dioxide @2 NK @2 FX @5 11
C03 11  X  SPA  @0 Dióxido sulfúrico @2 NK @2 FX @5 11
C03 12  X  FRE  @0 Dioxyde d'azote @2 NK @2 FX @5 12
C03 12  X  ENG  @0 Nitrogen dioxide @2 NK @2 FX @5 12
C03 12  X  SPA  @0 Nitrógeno dióxido @2 NK @2 FX @5 12
C03 13  2  FRE  @0 Pluie acide @5 13
C03 13  2  ENG  @0 acid rains @5 13
C03 13  2  SPA  @0 Lluvia ácida @5 13
C03 14  3  FRE  @0 Mitigation @5 14
C03 14  3  ENG  @0 Mitigation @5 14
C03 15  X  FRE  @0 Eté @5 15
C03 15  X  ENG  @0 Summer @5 15
C03 15  X  SPA  @0 Verano @5 15
C03 16  X  FRE  @0 Hiver @5 16
C03 16  X  ENG  @0 Winter @5 16
C03 16  X  SPA  @0 Invierno @5 16
C03 17  X  FRE  @0 Particule fine @5 17
C03 17  X  ENG  @0 Fine particle @5 17
C03 17  X  SPA  @0 Partícula fina @5 17
C03 18  2  FRE  @0 Echantillonnage @5 18
C03 18  2  ENG  @0 sampling @5 18
C03 18  2  SPA  @0 Muestreo @5 18
C03 19  2  FRE  @0 Tempête poussière @5 19
C03 19  2  ENG  @0 dust storms @5 19
C03 20  2  FRE  @0 Poussière @5 20
C03 20  2  ENG  @0 dust @5 20
C03 20  2  SPA  @0 Polvo @5 20
C03 21  2  FRE  @0 Etats Unis @2 NG @5 21
C03 21  2  ENG  @0 United States @2 NG @5 21
C03 21  2  SPA  @0 Estados Unidos @2 NG @5 21
C03 22  2  FRE  @0 Chine Sud @4 INC @5 31
C03 23  2  FRE  @0 Chine Nord @4 INC @5 32
C03 24  2  FRE  @0 Télédétection spatiale @5 41
C03 24  2  ENG  @0 Space remote sensing @5 41
C03 24  2  SPA  @0 Teledetección espacial @5 41
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
N21       @1 322
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0337467

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the potential high acid deposition in northeastern China</title>
<author>
<name sortKey="Junji Cao" sort="Junji Cao" uniqKey="Junji Cao" last="Junji Cao">JUNJI CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dabberdt, Walter F" sort="Dabberdt, Walter F" uniqKey="Dabberdt W" first="Walter F." last="Dabberdt">Walter F. Dabberdt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Vaisala Inc.</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Tang Jie" sort="Tang Jie" uniqKey="Tang Jie" last="Tang Jie">TANG JIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Chinese Academy of Meteorological Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhuzi Zhao" sort="Zhuzi Zhao" uniqKey="Zhuzi Zhao" last="Zhuzi Zhao">ZHUZI ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhisheng An" sort="Zhisheng An" uniqKey="Zhisheng An" last="Zhisheng An">ZHISHENG AN</name>
</author>
<author>
<name sortKey="Zhenxing Shen" sort="Zhenxing Shen" uniqKey="Zhenxing Shen" last="Zhenxing Shen">ZHENXING SHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Xi'an Jiaotong University</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yinchang Feng" sort="Yinchang Feng" uniqKey="Yinchang Feng" last="Yinchang Feng">YINCHANG FENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>State Environmental Protection Key Laboratory, Nankai University</s1>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0337467</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0337467 INIST</idno>
<idno type="RBID">Pascal:13-0337467</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000018</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000114</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the potential high acid deposition in northeastern China</title>
<author>
<name sortKey="Junji Cao" sort="Junji Cao" uniqKey="Junji Cao" last="Junji Cao">JUNJI CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dabberdt, Walter F" sort="Dabberdt, Walter F" uniqKey="Dabberdt W" first="Walter F." last="Dabberdt">Walter F. Dabberdt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Vaisala Inc.</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Tang Jie" sort="Tang Jie" uniqKey="Tang Jie" last="Tang Jie">TANG JIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Chinese Academy of Meteorological Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhuzi Zhao" sort="Zhuzi Zhao" uniqKey="Zhuzi Zhao" last="Zhuzi Zhao">ZHUZI ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Zhisheng An" sort="Zhisheng An" uniqKey="Zhisheng An" last="Zhisheng An">ZHISHENG AN</name>
</author>
<author>
<name sortKey="Zhenxing Shen" sort="Zhenxing Shen" uniqKey="Zhenxing Shen" last="Zhenxing Shen">ZHENXING SHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Xi'an Jiaotong University</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Yinchang Feng" sort="Yinchang Feng" uniqKey="Yinchang Feng" last="Yinchang Feng">YINCHANG FENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>State Environmental Protection Key Laboratory, Nankai University</s1>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research. Atmospheres : (Print)</title>
<title level="j" type="abbreviated">J. geophys. res., Atmos. : (Print)</title>
<idno type="ISSN">2169-897X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research. Atmospheres : (Print)</title>
<title level="j" type="abbreviated">J. geophys. res., Atmos. : (Print)</title>
<idno type="ISSN">2169-897X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical model</term>
<term>Fine particle</term>
<term>Measurement in situ</term>
<term>Mitigation</term>
<term>Nitrogen dioxide</term>
<term>Precursor</term>
<term>Satellite observation</term>
<term>Space remote sensing</term>
<term>Sulfur dioxide</term>
<term>Summer</term>
<term>United States</term>
<term>Winter</term>
<term>acid rains</term>
<term>acidity</term>
<term>aerosols</term>
<term>dust</term>
<term>dust storms</term>
<term>ozone</term>
<term>pH</term>
<term>sampling</term>
<term>tracers</term>
<term>urban areas</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Acidité</term>
<term>Mesure in situ</term>
<term>Observation par satellite</term>
<term>Modèle chimique</term>
<term>Ozone</term>
<term>Traceur</term>
<term>Aérosol</term>
<term>PH</term>
<term>Zone urbaine</term>
<term>Précurseur</term>
<term>Dioxyde de soufre</term>
<term>Dioxyde d'azote</term>
<term>Pluie acide</term>
<term>Mitigation</term>
<term>Eté</term>
<term>Hiver</term>
<term>Particule fine</term>
<term>Echantillonnage</term>
<term>Tempête poussière</term>
<term>Poussière</term>
<term>Etats Unis</term>
<term>Chine Sud</term>
<term>Chine Nord</term>
<term>Télédétection spatiale</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Ozone</term>
<term>Aérosol</term>
<term>Zone urbaine</term>
<term>Pluie acide</term>
<term>Poussière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] There is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO
<sub>2</sub>
and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO
<sub>2</sub>
emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO
<sub>2</sub>
concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca
<sup>+</sup>
, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigation-especially in northeastern China. However, there are additional issues pertaining to the precursor-acidity relationship that need further investigation. Why is it that the reduction in acidity due to the alkaline ions is only significant in summer? During winter, the measured alkaline ions play a much smaller role in explaining the discrepancy. The measured alkaline ions in this study were mostly obtained from particles in the PM
<sub>2.5</sub>
range. However, the size of calcium particles is typically much larger-extending well beyond 2.5 μm-and so a significant amount of calcium may be underestimated by PM
<sub>2.5</sub>
measurements alone. The under-sampling of calcium particles is further exacerbated in that the sampling protocol excluded particle (and soluble ion and pH) measurements during dust storms. This all leads to the need for an improved understanding of pollutant-ion-particulate interactions in China, and their role in explaining the counter-intuitive conclusion that dust mitigation strategies in China could have the unintended consequence of exacerbating acid rain conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>2169-897X</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res., Atmos. : (Print)</s0>
</fA03>
<fA05>
<s2>118</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the potential high acid deposition in northeastern China</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JUNJI CAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DABBERDT (Walter F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TANG JIE</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHUZI ZHAO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHISHENG AN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHENXING SHEN</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YINCHANG FENG</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Aerosol Science and Technology, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Vaisala Inc.</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Chinese Academy of Meteorological Sciences</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Xi'an Jiaotong University</s1>
<s2>Xian</s2>
<s3>CHN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>State Environmental Protection Key Laboratory, Nankai University</s1>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>4834-4846</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144D1</s2>
<s5>354000140724750650</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0337467</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research. Atmospheres : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] There is an acid deposition conundrum in China: contrary to conventional wisdom, extremely high ambient sulfate concentrations in northeastern China are not always accompanied by correspondingly high acidities. To investigate this discrepancy, data from two independent sets of in situ field measurements were analyzed along with Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Model for Ozone and Related chemical Tracers (MOZART) chemical transport model calculations. The field measurements included soluble aerosol ion concentrations and pH and particulate data from 11 cities, as well as pH measurement data from 74 sites in China. This study explores the basis for and the impacts of the large discrepancy in northeastern China between the major acidity precursors (SO
<sub>2</sub>
and NOx) and measured acidity levels as indicated by pH values. There are extremely high SO
<sub>2</sub>
emissions and ambient concentrations in northeastern China, while the corresponding acidity is unusually low (high pH) in this region. This is inconsistent with the usual situation where high-acidity precursor pollutants result in low pH (high acidity) values and acid rain conditions. In other regions, such as southern China and the United States, high SO
<sub>2</sub>
concentrations are typically well correlated with high acidities. Using measured soluble particle measurements (including both positively and negatively charged ions), it is seen that there are high values of alkaline ions in northeastern China that play an important role in neutralizing acidity in this region. This result strongly suggests that the high alkaline concentrations, especially Ca
<sup>+</sup>
, increase warm season pH values by about 0.5 in northern China, partially explaining the inconsistency between sulfate concentrations and acidity. This has a very important implication for acid rain mitigation-especially in northeastern China. However, there are additional issues pertaining to the precursor-acidity relationship that need further investigation. Why is it that the reduction in acidity due to the alkaline ions is only significant in summer? During winter, the measured alkaline ions play a much smaller role in explaining the discrepancy. The measured alkaline ions in this study were mostly obtained from particles in the PM
<sub>2.5</sub>
range. However, the size of calcium particles is typically much larger-extending well beyond 2.5 μm-and so a significant amount of calcium may be underestimated by PM
<sub>2.5</sub>
measurements alone. The under-sampling of calcium particles is further exacerbated in that the sampling protocol excluded particle (and soluble ion and pH) measurements during dust storms. This all leads to the need for an improved understanding of pollutant-ion-particulate interactions in China, and their role in explaining the counter-intuitive conclusion that dust mitigation strategies in China could have the unintended consequence of exacerbating acid rain conditions.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>001E02D</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Acidité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>acidity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mesure in situ</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Measurement in situ</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Medición en sitio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>ozone</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>tracers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>PH</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>pH</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>pH</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Zone urbaine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>urban areas</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Zona urbana</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dioxyde de soufre</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Sulfur dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dióxido sulfúrico</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dioxyde d'azote</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Pluie acide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>acid rains</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Lluvia ácida</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Mitigation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Mitigation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Eté</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Summer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Verano</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Hiver</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Winter</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Invierno</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Particule fine</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Fine particle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Partícula fina</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Echantillonnage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>sampling</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Muestreo</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Tempête poussière</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>dust storms</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Poussière</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>dust</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Polvo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Chine Sud</s0>
<s4>INC</s4>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Chine Nord</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Télédétection spatiale</s0>
<s5>41</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>Space remote sensing</s0>
<s5>41</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Teledetección espacial</s0>
<s5>41</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>322</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0337467
   |texte=   On the potential high acid deposition in northeastern China
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023